Продажа квадроциклов, снегоходов и мототехники
second logo
Пн-Чт: 10:00-20:00
Пт-Сб: 10:00-19:00 Вс: выходной

+7 (812) 924 3 942

+7 (911) 924 3 942

Синус(sin), косинус(cos), тангенс(tg), котангенс(ctg) — как найти, отношение, формулы

Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.

Напомним, что прямой угол — это угол, равный 90 градусов. Другими словами, половина развернутого угла.

Острый угол — меньший 90 градусов.

Тупой угол — больший 90 градусов. Применительно к такому углу «тупой» — не оскорбление, а математический термин 🙂

Нарисуем прямоугольный треугольник. Прямой угол обычно обозначается C. Обратим внимание, что сторона, лежащая напротив угла, обозначается той же буквой, только маленькой. Так, сторона, лежащая напротив угла A, обозначается .

Угол A обозначается соответствующей греческой буквой .

Гипотенуза прямоугольного треугольника — это сторона, лежащая напротив прямого угла.

Катеты — стороны, лежащие напротив острых углов.

Катет , лежащий напротив угла , называется противолежащим (по отношению к углу ). Другой катет , который лежит на одной из сторон угла , называется прилежащим.

Синус острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе:

sin A

Косинус острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе:

cos A

Тангенс острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:

tg A

Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:

tg A

Котангенс острого угла в прямоугольном треугольнике — отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

ctg A

Обратите внимание на основные формулы для синуса, косинуса, тангенса и котангенса, которые приведены ниже.

Они пригодятся нам при решении задач.

sinsincos
cos1+tgcos = sin
tg1+ctgsin = cos
ctgtg = ctg

Давайте докажем некоторые из них.

  1. Сумма углов любого треугольника равна . Значит, сумма двух острых углов прямоугольного треугольника равнa .
  2. С одной стороны, как отношение противолежащего катета к гипотенузе. С другой стороны, , поскольку для угла катет а будет прилежащим. Получаем, что . Иными словами, .
  3. Возьмем теорему Пифагора: . Поделим обе части на получаем то есть
    Мы получили основное тригонометрическое тождество.
  4. Поделив обе части основного тригонометрического тождества на , получим: Это значит, что если нам дан тангенс острого угла , то мы сразу можем найти его косинус. Аналогично,

Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?

Мы знаем, что сумма углов любого треугольника равна .

Знаем соотношение между сторонами прямоугольного треугольника. Это теорема Пифагора: .

Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов — свое соотношение, для сторон — свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?

С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.

Синус, косинус и тангенс — их еще называют тригонометрическими функциями угла — дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

Мы тоже нарисуем таблицу значений синуса, косинуса, тангенса и котангенса для «хороших» углов от до .

0
sin0
cos0
tg0
ctg0

Обратите внимание на два прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.

Докажем теорему:

Если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то синусы этих углов равны, косинусы этих углов равны и тангенсы этих углов равны.

В самом деле, пусть АВС и — два прямоугольных треугольника с прямыми углами С и и равными острыми углами А и

Треугольники АВС и подобны по первому признаку подобия треугольников, поэтому

Из этих равенств следует, что т. е. sin А = sin

Аналогично, т. е. cos А = cos и т. е. tg A = tg

Это значит, что синус, косинус и тангенс зависят только от величины угла.

Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.

Задача 1. В треугольнике ABC угол C равен , sin A = 0,1. Найдите cos B.

Задача решается за четыре секунды.

Поскольку , sin A = cos B = 0,1.

Задача 2. В треугольнике угол равен , , .

Найдите .

Решение:

Отсюда

Найдем AC по теореме Пифагора.

Ответ: 4,8.

Задача 3. В треугольнике АВС угол С равен AВ = 13, ВС = 5. Найдите косинус и тангенс острого угла А. Ответ округлите до сотых.

Решение:

Для угла А противолежащий катет – это ВС,

АВ является гипотенузой треугольника, лежит против Значит, sin A

Катет, прилежащий к – это катет АС, следовательно, cos⁡ А

Длину катета АС найдем по теореме Пифагора:

Тогда

cos⁡ А

tg A

Ответ: 0,92; 0,42.

Заметим, что если катеты прямоугольного треугольника равны 5 и 12, то гипотенуза равна 13. Это одна из так называемых Пифагоровых троек. О них мы расскажем в других статьях сайта.

Задача 4. В треугольнике АВС угол С равен AC = 2, sin A=

Найдите BC.
Решение:

AC = b = 2, BC = a, AB = c.

Так как sin A

По теореме Пифагора получим

Ответ: 0,5.

Задача 5. В треугольнике АВС угол С равен tg A = Найдите AB.

Решение:

AC = b = 4, tg A

Ответ: 7.

Задача 6.

В треугольнике АВС угол С равен CH – высота, AB = 13, tg A = Найдите AH.

Решение:

AВ = с = 13, tg A = тогда b = 5a.

По теореме Пифагора ABC:

тогда

(по двум углам), следовательно откуда

Ответ: 12,5.

Задача 7. В треугольнике АВС угол С равен

CH – высота, BC = 3, sin A =

Найдите AH.

Решение:

Так как sin A = тогда c = АВ = 18.

sin A = = cos⁡ B =

Рассмотрим BHC:

= получим

тогда BH = = 0,5,

AH = AB — BH = 18 — 0,5 = 17,5.

Ответ: 17,5.

Задача 8. В треугольнике АВС угол С равен 90 CH — высота, BC = 3, cos A =

Найдите АH.

Решение:

Так как для АВС: A = sin В =

а для ВНС: sin В = = , откуда СН =

По теореме Пифагора найдем ВН:

Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой. Поэтому для АВС получим:

тогда

Ответ: 17,5.

Задача 9. В треугольнике АВС угол С равен 90 CH — высота, СН = 24 и BН = 7. Найдите sin A.

Решение:

По определению sin A= = =

Рассмотрим BHC :

ВС найдем по теореме Пифагора:

ВС=

тогда а значит и sin A = = 0,28.

Ответ: 0,28.

Задача 10. В треугольнике АВС угол С равен 90 CH — высота, СН = 8 и BН = 4. Найдите tg A.

Решение:

По определению sin A = = = cos A = = =

тогда tg A = который найдем из BHC:

Ответ: 0,5.

Задача 11. В треугольнике АВС угол С равен 90 CH — высота, BН = 12, tg A = Найдите АН.

Решение:

По определению tg A=

Для BHC: , значит СН =

Для АHC: tg A= то AH =

Ответ: 27.

Задача 12. В треугольнике АВС угол С равен 90 CH — высота, BН = 12, sin A = Найдите АВ.

Решение:

Так как cos В = = sin A =

Из СВН имеем cos В = = тогда ВС =

В АВС имеем sinA = = тогда AВ =

Ответ: 27.

Задача 13. В треугольнике АВС угол С равен 90 из вершины прямого угла к гипотенузе проведена высота СН. Найдите cos A, AC и AB, если СН = 12, ВС = 20.

Решение:

Найдем НВ по теореме Пифагора из ВСН:

sin В = =

Для АВС: cos A = получили cos A = 0,6.

Найдем АС и АВ несколькими способами.

1-й способ.

Так как cos A = то пусть АС = 3х, АВ = 5х,

тогда по теореме Пифагора получим


х = 5 ( так как х0). Значит,

2-й способ.

(по двум углам), значит или

k = тогда АС = ; АВ =

3-й способ.

(высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой) , тогда АН = 144:16 = 9.

АВ = АН + НВ = 9 + 16 = 25.

По теореме Пифагора найдем АС:

=

Ответ: cos A = 0,6; АС = 15, АВ = 25.

Задача 14.

Высота ВН прямоугольного треугольника АВС, проведенная из вершины прямого угла В, равна 24 и отсекает от гипотенузы АС отрезок НС, равный 18.

Найдите АВ и cos А.

Решение:

Из прямоугольного ВНС по теореме Пифагора найдем гипотенузу ВС и cos C:

ВС = =

cos C =

Для АВС: sin А = = cos C =

Для АНВ: sin А = = то = АВ =

Из основного тригонометрического тождества найдем

cos A =

Ответ: АВ = 40, cos A = 0,8.

Задача 15.

Гипотенуза АС прямоугольного треугольника АСЕ равна 50, sin А =

Найдите площадь треугольника.

Решение:

В прямоугольном АСЕ sin А =

значит = 14.

Второй катет найдем, используя теорему Пифагора:

Площадь прямоугольного треугольника равна S =

поэтому

Ответ: 336.

Задача 16.

В треугольнике АВС угол С — прямой, катеты АВ = 13 и ВС = 12, СК — высота.

Найдите sin Результат округлите до сотых.

Решение:

A-общий, ),

значит sin

Найдем АС по теореме Пифагора из САВ:

Тогда sin

Ответ: 0,38.

Задача 17. В треугольнике АВС АС = ВС, АВ = 72, cos A = Найдите высоту СН.

Решение:

Так как АС = ВС, то АВС — равнобедренный с основанием АВ, тогда

высота СН является медианой, то есть АН = НВ =

Поскольку АСН — прямоугольный,

cos A = то есть АС =

По теореме Пифагора тогда

Ответ: 15.

Задача 18. В треугольнике АВС угол С равен 90 sin A = AC = 10 Найдите АВ.

Решение:

1-й способ.

Поскольку sin A = то можно обозначить

ВС = 11х, АВ = 14х.

По теореме Пифагора

(14х- 11х)(14х + 11х) = 3 100;

учитывая, что длина стороны положительна, х = 2,

следовательно, АВ = 14 2 = 28.

2-й способ.

Воспользуемся основным тригонометрическим тождеством

cos A =

По определению cos A = значит

Так как АС=10 то откуда АВ = = 28.

Ответ: 28.

Задача 19. Найдите углы ромба АВСD, если его диагонали АС и ВD равны 4 и 4.

Решение:

Пусть ВАО =

Диагонали ромба делят его углы пополам, значит, =

Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам, следовательно, в прямоугольном треугольнике АВО катет АО = а катет ВО =

Поэтому tg откуда

Ответ:

Часто в задачах встречаются треугольники с углами и или с углами и . Основные соотношения для них запоминайте наизусть!

Для треугольника с углами и катет, лежащий напротив угла в , равен половине гипотенузы.

Треугольник с углами и — равнобедренный. В нем гипотенуза в раз больше катета.

Задача 20.

В треугольнике АВС угол С равен 90 угол А равен 30 АВ = 2

Найдите высоту CH.

Решение:

Рассмотрим АВС:

По свойству катета, лежащего против угла имеем ВС = АВ =

В BHC: то следовательно, ВН = BC =

По теореме Пифагора найдем НС:

Ответ: 1,5.

Задача 21.

В треугольнике АВС угол С равен 90 CH — высота, АВ = 2, Найдите АH.

Решение:

Из АВС найдем ВС = АВ = 1 (по свойству катета, лежащего против угла 30),

то

Из ВСН: то следовательно,

ВН = ВС =

АН = АВ — НВ = 2 — = 1,5.

Ответ: 1,5.

Еще раз повторим, что такое синус, косинус и тангенс угла в прямоугольном треугольнике.

Как запомнить эти соотношения? Лучший способ – решать много задач, и на уроках геометрии, и готовясь к ЕГЭ. Тогда все формулы, равенства, соотношения запомнятся сами собой.

Мы рассмотрели задачи на решение прямоугольных треугольников — то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника. Об этом — в следующей статье.

Если вам понравился разбор данной темы — записывайтесь на курсы подготовки к ЕГЭ по математике онлайн

 

Спасибо за то, что пользуйтесь нашими публикациями. Информация на странице «Синус, косинус и тангенс острого угла прямоугольного треугольника» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам. Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена: 07.02.2023

Синус, косинус, тангенс и котангенс в тригонометрии: определения, формулы, примеры

Тригонометрия — раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой нужной науки внесли ученые Ближнего Востока и Индии, которые придумали наиболее важные понятия, объяснили многие свойства, предложили варианты измерения и др.

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии без таблиц и графиков.

Синус, косинус, тангенс и котангенс. Определения

Зачем разделять понятия синуса, косинуса, тангенса и котангенса?

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Что такое синус?

Синус угла (sin α) — это отношение противолежащего этому углу катета к гипотенузе.

Что такое косинус?

Косинус угла (cosα) — это отношение прилежащего катета к гипотенузе.

Что такое тангенс?

Тангенс угла (tg α) — это отношение противолежащего катета к прилежащему.

Котангенс угла (ctg α) — отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

Синус и косинус можно представить через экспоненту (экспоненциальная функция).

Приведем иллюстрацию. 

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Означения синуса, косинуса, тангенса и котангенса позволяют вычислять (находить) значения этих функций по известным длинам сторон треугольника.

Что и почему важно и принято помнить в ходе такого нахождения?

Важно помнить!

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тг и ктг — вся числовая прямая, то есть эти функции могут принимать любые значения.

Как найти синус? Для начала нужно определиться, какой перед нами треугольник: прямоугольный или произвольный. В первом случае можно использовать обычный тригонометрический метод, а во втором — теорему косинусов.

Как найти косинус? Соответственно, нам нужно знать значения прилежающего катета и гипотенузы. 

Как найти тангенс? Если треугольник прямоугольный, то тангенс вычисляется при помощи значений противоположного катета и прилежащего (в уравнении нужно поделить одно на другое). Если речь идет о числах, тупых, развернутых углов и углов, превышающих 360 градусов, то тангенс определяется при помощи синуса и косинуса (посредством их отношения и деления).

Теорема синусов и косинусов используется для того чтобы искать элементы в произвольном треугольнике. Такой поиск используется часто.

Угол поворота

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от -∞ до +∞. 

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность (круг) с центром в начале декартовой системы координат.

                                                                 

Начальная точка A с координатами (1, 0) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A1.  Определение дается через координаты точки A1(x , y). 

Синус (sin или син) угла поворота

Синус угла поворота α — это ордината точки A1(x , y). sin α=y

Косинус (cos) угла поворота

Косинус угла поворота α — это абсцисса точки A1(x , y). cos α=икс

Тангенс (tg) угла поворота

Тангенс угла поворота α — это отношение ординаты точки A1(x , y) к ее абсциссе. tg α=yx

Котангенс (ctg) угла поворота

Котанг угла поворота α — это отношение абсциссы точки A1(x , y) к ее ординате. ctg α=xy

Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой (0, 1) и (0, -1). В таких случаях выражение для тангенса tg α=yx просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогична ситуация с котангенсом. Отличие состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.

Важно помнить!

Простое правило: синус и косинус определены для любых углов α.

Тангенс определен для всех углов, кроме α=90°+180°·k, k∈Z (α=π2+π·k, k∈Z)

Котангенс определен для всех углов, кроме α=180°·k, k∈Z (α=π·k, k∈Z)

При решении практических примеров не говорят «синус угла поворота α». Слова «угол поворота» просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь. 

Числа

Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в радиан.

Например, синус числа 10π равен синусу угла поворота величиной 10π рад.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.

Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.

Начальная точка на окружности — точка A c координатами (1, 0).

Положительному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t.

Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t.

Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.

Синус (sin) числа t

Синус числа t — ордината точки единичной окружности, соответствующей числу t. sin t=y

Косинус (cos) числа t

Косинус числа t — абсцисса точки единичной окружности, соответствующей числу t. cos t=x

Тангенс (tg) числа t

Тангенс числа t — отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t.  tg t=yx=sin tcos t

Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t, совпадает с точкой, в которую переходит начальная точка после поворота на угол радиан.

Тригонометрические функции углового и числового аргумента

Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α, отличным от α = 90 ° + 180 ° · k ,   k ∈ Z   ( α = π 2 + π · k ,   k ∈ Z ) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α, кроме α = 180 ° · k ,   k ∈ Z   ( α = π · k ,   k ∈ Z ). 

Можно сказать, что sin α, cos α, tg α, ctg α — это функции угла альфа, или функции углового аргумента. 

Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу соответствует определенное значение синуса или косинуса числа t. Всем числам, отличным от π 2 + π · k ,   k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k ,   k ∈ Z.

Основные функции тригонометрии

Синус, косинус, тангенс и котангенс — основные тригонометрические функции.

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело. 

Связь определений sin, cos, tg и ctg из геометрии и тригонометрии

Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью  соотношений сторон прямоугольного треугольника. Покажем это.

                                                                     

Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A(1,0) на угол величиной до 90 градусов и проведем из полученной точки A1(x,y) перпендикуляр к оси абсцисс. В полученном прямоугольном треугольнике угол A1OH равен углу поворота α, длина катета OH равна абсциссе точки A1(x,y). Длина катета, противолежащего углу, равна ординате точки A1(x,y), а длина гипотенузы равна единице, так как она является радиусом единичной окружности. 

В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе. 

sin α=A1HOA1=y1=y

Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α, при альфа лежащем в пределах от 0 до 90 градусов.

Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.

Синус, косинус, тангенс и котангенс: основные формулы

​​​​​​​

тригонометрия — Как получить значение синуса/косинуса из тангенса

спросил

Изменено 5 лет, 1 месяц назад

Просмотрено 74к раз

$\begingroup$

Я знаю, что: $\tan(\alpha) = 1/2$.

Как получить чистые значения синуса/косинуса 9\circ$) углы $\alpha$.

2) Вы знаете, что тангенс $\alpha$ равен ${1\over2}$. Поскольку $\tan={\text{противоположный}\over \text{прилегающий}}$, вы можете обозначить сторону треугольника, примыкающую к $\alpha$, «1», а противоположную сторону — «2».

3) По теореме Пифагора можно найти длину гипотенузы треугольника.

4) Теперь вы можете прочитать $\sin(\alpha)$ из завершенного треугольника. И помните, что грех от угла противоположен/гипотенуза — 1/радикал 5 92 \alpha = \frac{4}{5}.$$

Таким образом, возможно $$\sin \alpha = \pm \frac{1}{\sqrt{5}}, \quad \cos \alpha = \pm \frac{2}{\sqrt{5}}.$$

Нам еще нужно показать, что эти возможности возможны. Мы знаем, что существует $\alpha$, такое что $\tan \alpha = \frac{1}{2}$. т.е. исходное уравнение имеет решение. Теперь, если $\alpha$ — решение, то $\alpha + \pi$ — тоже. Отсюда мы можем сделать вывод, что и $\sin \alpha = \frac{1}{\sqrt{5}}$, и $\sin \alpha = -\frac{1}{\sqrt{5}}$ достижимы и так и $\cos \alpha = \pm \frac{1}{\sqrt{5}}$. Причем знаки должны быть одинаковыми для обоих. Таким образом, решения $$(\cos\alpha,\sin\alpha)\in\{(\frac{1}{\sqrt{5}}, \frac{1}{\sqrt{5}}), (-\frac{ 1}{\sqrt{5}}, -\frac{1}{\sqrt{5}})\}.$$

$\endgroup$

тригонометрия — Как вычислить синус, косинус или тангенс угла (простое объяснение)

Я думаю, что здесь действительно два вопроса:

  1. Как Архимед нашел длину стороны прямоугольного треугольника, противоположной заданному угол?
  2. Как калькулятор вычисляет триггерные функции?

Для №1: Честно говоря, я думаю, что он просто нарисовал и измерил. Это приводит к вопросу: «Как вообще они измеряли длину?» и, может быть, это на самом деле то, что вы спрашивали. В те дни измерения длины часто основывались на частях тела. См. здесь для получения дополнительной информации, включая другие методы/устройства.

Для № 2: Подробный ответ довольно технический и сложный, поэтому я постараюсь максимально упростить.

Как указано в другом ответе, калькуляторы используют ряды Тейлора для оценки триггерных функций. По сути, ряд Тейлора — это способ выражения функции с помощью четырех основных операций сложения, вычитания, умножения и деления.

Каждый компьютер и каждый калькулятор (с электроприводом) имеет центральный процессор, для краткости называемый ЦП. Процессор состоит из пучка крошечных проводов, по которым проходит электрический ток. Когда мы отдаем компьютеру или калькулятору команды (например, открываем или сохраняем файл, нажимаем кнопки на клавиатуре или калькуляторе), электричество проходит по проводам таким образом, что эти команды действительно выполняются.

Самые основные операции, которые мы можем выполнять с этой электрической разводкой, — это сложение и вычитание. Умножение и деление должны выполняться с соответствующими комбинациями сложения и вычитания. Иными словами, мы можем выполнять операции сложения и вычитания по одному электрическому маршруту. Но для чего-то более сложного потребуется не один маршрут. Например, когда вы говорите своему калькулятору сделать $4 + 5$, для этого требуется только один маршрут. Но если вы скажете своему калькулятору сделать 4 доллара умножить на 5 долларов, то электричество, проходящее по проводам, на самом деле составит 4 доллара + 4 + 4 + 4 + 4 доллара, что занимает четыре пути (по одному на каждое сложение, а у нас есть четыре сложения). ).

То же самое относится и к более сложным операциям и функциям. Им также требуется более одного электрического маршрута, где каждый электрический маршрут в основном представляет собой сложение или вычитание. В этом нам поможет ряд Тейлора. Ряд Тейлора говорит нам, как вычислять эти функции с помощью сложения, вычитания, умножения и деления. И помните, что умножение и деление сами по себе «определяются» (в электрической схеме ЦП) с помощью сложения и вычитания. Поэтому, когда вы говорите своему калькулятору вычислить синус некоторого числа, электричество направляется по проводам, так что он фактически вычисляет выражение, данное рядом Тейлора.

Разное

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *